5 research outputs found

    Unsupervised Learning Facial Parameter Regressor for Action Unit Intensity Estimation via Differentiable Renderer

    Full text link
    Facial action unit (AU) intensity is an index to describe all visually discernible facial movements. Most existing methods learn intensity estimator with limited AU data, while they lack generalization ability out of the dataset. In this paper, we present a framework to predict the facial parameters (including identity parameters and AU parameters) based on a bone-driven face model (BDFM) under different views. The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor. The regressor can fit the physical meaning parameters of the BDFM from a single face image with the help of the generator, which maps the facial parameters to the game-face images as a differentiable renderer. Besides, identity loss, loopback loss, and adversarial loss can improve the regressive results. Quantitative evaluations are performed on two public databases BP4D and DISFA, which demonstrates that the proposed method can achieve comparable or better performance than the state-of-the-art methods. What's more, the qualitative results also demonstrate the validity of our method in the wild

    mEBAL: A Multimodal Database for Eye Blink Detection and Attention Level Estimation

    Full text link
    This work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequency

    MEBAL: A multimodal database for eye blink detection and attention level estimation

    Full text link
    © ACM 2020. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ICMI '20 Companion, October 25–29, 2020, Virtual Event, Netherlands, https://doi.org/10.1145/3395035.3425257This work presents mEBAL, a multimodal database for eye blink detection and attention level estimation. The eye blink frequency is related to the cognitive activity and automatic detectors of eye blinks have been proposed for many tasks including attention level estimation, analysis of neuro-degenerative diseases, deception recognition, drive fatigue detection, or face anti-spoofing. However, most existing databases and algorithms in this area are limited to experiments involving only a few hundred samples and individual sensors like face cameras. The proposed mEBAL improves previous databases in terms of acquisition sensors and samples. In particular, three different sensors are simultaneously considered: Near Infrared (NIR) and RGB cameras to capture the face gestures and an Electroencephalography (EEG) band to capture the cognitive activity of the user and blinking events. Regarding the size of mEBAL, it comprises 6,000 samples and the corresponding attention level from 38 different students while conducting a number of e-learning tasks of varying difficulty. In addition to presenting mEBAL, we also include preliminary experiments on: i) eye blink detection using Convolutional Neural Networks (CNN) with the facial images, and ii) attention level estimation of the students based on their eye blink frequencyThis work has been supported by projects: PRIMA (ITN-2019-860315), TRESPASS-ETN (ITN-2019-860813), IDEA-FAST (IMI2- 2018-15-two-stage-853981), BIBECA (RTI2018-101248-B-I00 MINECOFEDER), and edBB (Universidad Autonoma de Madrid). Ruben Tolosana and postdoc support from CAM/FEDER. Roberto Daza is supported by a PhD FPI fellowship from MINECO-FEDE

    AVEC 2018 workshop and challenge: bipolar disorder and cross-cultural affect recognition

    Get PDF
    International audienceThe Audio/Visual Emotion Challenge and Workshop (AVEC 2018) "Bipolar disorder, and cross-cultural affect recognition" is the eighth competition event aimed at the comparison of multimedia processing and machine learning methods for automatic audiovisual health and emotion analysis, with all participants competing strictly under the same conditions. The goal of the Challenge is to provide a common benchmark test set for multimodal information processing and to bring together the health and emotion recognition communities, as well as the audiovisual processing communities, to compare the relative merits of various approaches to health and emotion recognition from real-life data. This paper presents the major novelties introduced this year, the challenge guidelines, the data used, and the performance of the baseline systems on the three proposed tasks: bipolar disorder classification, cross-cultural dimensional emotion recognition, and emotional label generation from individual ratings, respectively
    corecore